Riding the whole-genome data tsunami: a landscape genomic study of local adaptation in Moroccan sheep and goats

Sylvie Stucki, Kevin Leempoel & Stéphane Joost & the $\operatorname{NEXTGEN}$ Consortium

Laboratory of Geographic Information Systems (LASIG)

June 18, 2014

Outline

Introduction

Sampling and data

Method

Results

Discussion

Introduction

Small ruminants in Morocco

- Key importance of local breeds for population livelihood
- NEXTGEN project: Whole-genome sequencing techniques ⇒ improve sustainable breeding practices
- Local adaptation in Moroccan sheep and goats

Landscape genomics

- Individuals are adapted to their habitat
- Detect selection signatures using genome-environment associations

Whole genome sequencing

Computational workload

Outline

Introduction

Sampling and data

Method

Results

Discussion

Sheep samples to be sequenced

Molecular and environmental data

Whole-genome sequencing

Sheep	Goats
160 samples	161 samples
40.7M SNPs	29.6M SNPs
2.8M indels	2.1M indels

Molecular and environmental data

Whole-genome sequencing

Goats

160 samples 161 samples 40.7M SNPs 29.6M SNPs 2.8M indels 2.1M indels

Climate and topography-related data

WorldClim Shuttle Radar Topography

Mission (SRTM)

monthly values for Slope, curvature, day duration,

precipitation and temperature total insolation (solstices), ...

Molecular and environmental data

Whole-genome sequencing

Goats

160 samples 161 samples 40.7M SNPs 29.6M SNPs 2.8M indels 2.1M indels

Climate and topography-related data

WorldClim Shuttle Radar Topography Mission (SPTM)

Mission (SRTM)

monthly values for Slope, curvature, day duration, precipitation and temperature total insolation (solstices), . . .

Looking at correlations

Looking at correlations

Outline

Introduction

Sampling and data

Method

Results

Discussion

Detection of selection signatures

Logistic regressions

Maximum likelihood G and Wald tests Bonferroni correction

$\mathsf{Sam}\beta\mathsf{ada}$

Logistic regressions

Maximum likelihood *G* and Wald tests
Bonferroni correction

lasig.epfl.ch/sambada

Samßada

Logistic regressions

$\begin{tabular}{ll} \textbf{Maximum likelihood}\\ G \ \mbox{and Wald tests} \end{tabular}$

False discovery rate (Storey, 2003)

lasig.epfl.ch/sambada

Samßada

Logistic regressions

Maximum likelihood

G and Wald tests False discovery rate (Storey, 2003)

Multivariate analysis

Spatial autocorrelation

lasig.epfl.ch/sambada

Sam \(\beta \) ada's workflow

One process

Samßada's workflow

Distributed computing

Overview of analysis

- 1. Prune markers so LD≤0.2

 PLINK 1.9: -indep-pairwise 50 5 0.2
- Prune markers for loci and individual call rates and MAF PLINK 1.9: -geno=0.05 -mind=0.05 -maf 0.05
- 3. Analyse population structure with Admixture
- Remove chromosomes X, Y
 sheep 1'799'364 markers (SNPs and indels) goats 1'757'210 markers (SNPs and indels)
- Recode markers for Samβada biallelic markers, recoded as {A, G} SNPs.

Outline

Introduction

Sampling and data

Method

Results

Discussion

Population structure (Admixture; Alexander, 2009)

FDR selection of models

Sheep

Marker	Env.	G score	Wald score	q-value
23:43794976_GG	prec_3	44.30	24.29	0.0011
23:43812782_GG	prec_3	44.30	24.29	0.0011
23:43874160_GG	prec_3	42.56	23.39	0.0017
1:38304177_GG	bio_15	37.37	18.29	0.0185
23:43847594_GG	prec_3	33.73	23.09	0.0957
7:48256781_GG	bio_15	32.00	18.87	0.1669
7:48262822_GG	bio_15	32.00	18.87	0.1669
23:43861704_GG	prec_3	31.53	21.43	0.1855
1:190582_AA	tmean_7	30.68	18.69	0.2501
1:137076394_GG	tmean_7	30.52	17.00	0.2501

FDR selection of models

Goats

Marker	Env.	G score	Wald score	q-value
24:19436980_GG	bio_15	38.00	26.21	0.0197
6:12259667_AA	bio_15	37.78	25.96	0.0197
6:12254244_AA	bio_15	37.78	25.96	0.0197
20:4481114_GG	bio_7	34.48	19.65	0.0803
6:12242353_GG	bio_15	33.07	24.82	0.1322
9:14309947_GG	bio_7	32.55	19.19	0.1322
2:133961081_GG	tmean_7	32.33	22.90	0.1322
6:47914533_AA	prec_3	32.16	16.84	0.1322
11:15823825_GG	bio_7	31.93	23.69	0.1322
4:95035251_GG	bio_15	31.52	20.56	0.1471

Outline

Introduction

Sampling and data

Method

Results

Discussion

You promised!

Everything was prepared...

- Data was split by chromosome
- Automation scripts were designed
- Analysis was run successfully

You promised!

Everything was prepared...

- Data was split by chromosome
- Automation scripts were designed
- Analysis was run successfully

Monday, 6pm (Lausanne time)

MISTAKE spotted!

You promised!

You promised!

Monday, 6pm - Thuesday, 2pm (Lausanne time)

- Correct mistake
- Run analysis on pruned dataset
- Launch analysis on whole dataset

You promised!

Monday, 6pm - Thuesday, 2pm (Lausanne time)

- Correct mistake
- Run analysis on pruned dataset
- Launch analysis on whole dataset

Other tasks

- Online C++ assessment
- Job interview

You promised!

Wednesday, 5pm (Caerdydd time)

WGS Analysis just finished :-)

You promised!

Wednesday, 5pm (Caerdydd time)

WGS Analysis just finished :-)

Computation time

Sheep

2M SNPs \times 15 env. var. 28M SNPs \times 15 env. var. 1 desktop computer, 8 cores \sim 2 hours 28M SNPs \times 15 env. var. \sim 18 hours

The story so far...

No population structure in Moroccan sheep and goats

• Use simple landscape genomic models

Samßada can analyse WGS data

- Signal of selection is weak
- Maybe adapt our method?

Next steps

- Map detections on the genome
- Analyse local spatial autocorrelation
- Compare sheep and goats

Thank you!

sylvie.stucki@a3.epfl.ch

Appendix

False discovery rate

Outline

False discovery rate

False discovery rate according to Storey (2003)

Neutral markers Uniform distribution of p-values Markers under selection Small p-values

False discovery rate according to Storey (2003)

False discovery rate according to Storey (2003)

Sam β ada's results : p-values

Sam β ada's results : p-values

